

Honors in Computational Finance

Semester: VIII

Program: Computer Science and Engineering (Data Science)

Course: Stochastic Calculus (DJ19DSHN1C4)

Pre-requisite:

- 1. Calculus I and II
- 2. Probability and Statistics
- 3. Linear Algebra
- 4. Differential Equations

Objectives:

- 1. To familiarize students with various types of random processes and their applications in engineering, finance, and other fields.
- 2. To explore the concept of Brownian motion as a fundamental stochastic process and its significance in modeling random phenomena.
- 3. Introduce students to the applications of stochastic calculus in areas such as finance, risk assessment, and engineering optimization.

Outcomes: On completion of the course, the learner will be able to:

- 1. Apply probability theory to analyze random events and situations, and compute probabilities for various scenarios.
- 2. Describe Brownian motion, understand its properties, and apply it in the context of stochastic processes.
- 3. Apply numerical methods, including Euler-Maruyama and Monte Carlo simulations, for practical stochastic modeling and analysis.

Stochastic Calculus (DJ19DSHN1C4)			
Unit	Description	Duration	
	Introduction to Probability:		
1	Sample spaces, events, and probability, Conditional probability, Random variables, probability distributions, Joint Distribution of Random Variables, Problems in Random	06	
	variables and Distributions, Definition of random processes, Stationary and non-stationary processes.		
	Markovian Chain:		
2	Introduction to Discrete time Markov Chain, Introduction to Chapman-Kolmogorov equations, State Transition Diagram and Examples, Introduction to Classification of States and Periodicity, Introduction to Continuous time Markov Chain, Markov Chain Monte Carlo	10	
	methods.		
3	Brownian Motion:		
	Introduction to Brownian motion, Process derived from Brownian motion, Stochastic differential equation, Properties of Brownian motion, Ito Integrals.	06	

	Ito calculus for Brownian motion:	
	Adapted functions of Brownian motion, filtration (informal), the Ito integral, causal	
	approximation, almost sure convergence, Borel Cantelli lemma, convergence of Ito integral	10
4	approximation (informal), Ito's lemma, martingales, quadratic variation, Option pricing with	
	fractional Brownian motion.	
	Diffusion processes:	
	The Ornstein Uhlenbeck process, geometric Brownian motion, backward equation and the	
	generator, forward equation, adjoint, probability dynamics, Ito integral and Ito's lemma for	10
5	general diffusions (informal), quadratic variation, stochastic differential equations, coupling	10
	to Brownian motion, simulating general diffusions, random walk and finite difference	
	approximations, Case studies on Credit risk modeling, High-frequency trading	
	Change of measure:	
6	Probability space and measure (informal), expectation and the probability integral	
	(informal), probability density and likelihood ratio hypothesis testing, the Neyman Pearson	10
	lemma, importance sampling, change of measure/drift for Brownian motion, Girsanov	
	theorem for general diffusions, rare event simulation, Applications of Stochastic Calculus	
	to Finance (Risk Neutral Pricing with Geometric Brownian Motion).	
	Total	52

Books Recommended:

Text books:

- 1. Steven Shreve, "Stochastic Calculus for Finance The binomial asset pricing model. I " W. Ross MacDonald School Resource Services Library, 3rd Edition, 2019.
- 2. Gregory F. Lawler, "Stochastic Calculus: An Introduction with Applications", Gregory F. Lawler, 2023.

Reference Books:

- 1. Sheldon M. Ross, "Introduction to Probability Models", 12th Edition, Academic Press 2022.
- 2. Samuel N. Cohen, Robert J. Elliott, "Stochastic Calculus and Applications" Springer, 2015.

Web Links:

1. NPTEL Course: Stochastic Processes: <u>https://nptel.ac.in/courses/111102098</u>